منابع مشابه
Lagrangian and Legendrian Singularities
These are notes of the mini-courses we lectured in Trieste in 2003 and Luminy in 2004. The courses were based on the books [1, 3, 2]. A symplectic form ω on a manifold M is a closed 2-form, non-degenerate as a skew-symmetric bilinear form on the tangent space at each point. So dω = 0 and ω n is a volume form, dim M = 2n. Manifold M equipped with a symplectic form is called symplectic. It is nec...
متن کاملMetrics with conic singularities and spherical polygons
A spherical n-gon is a bordered surface homeomorphic to a closed disk, with n distinguished boundary points called corners, equipped with a Riemannian metric of constant curvature 1, except at the corners, and such that the boundary arcs between the corners are geodesic. We discuss the problem of classification of these polygons and enumerate them in the case that two angles at the corners are ...
متن کاملRigid and Complete Intersection Lagrangian Singularities
In this article we prove a rigidity theorem for lagrangian singularities by studying the local cohomology of the lagrangian de Rham complex that was introduced in [SvS03]. The result can be applied to show the rigidity of all open swallowtails of dimension ≥ 2. In the case of lagrangian complete intersection singularities the lagrangian de Rham complex turns out to be perverse. We also show tha...
متن کاملPropagation of Singularities for the Wave Equation on Conic Manifolds
For the wave equation associated to the Laplacian on a compact manifold with boundary with a conic metric (with respect to which the boundary is metrically a point) the propagation of singularities through the boundary is analyzed. Under appropriate regularity assumptions the diffracted, nondirect, wave produced by the boundary is shown to have Sobolev regularity greater than the incoming wave.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1998
ISSN: 0166-8641
DOI: 10.1016/s0166-8641(97)00203-4